Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
How complex is the structure of quantum geometry? In several approaches, the spacetime atoms are obtained by the SU(2) intertwiner called quantum tetrahedron. The complexity of this construction has a concrete consequence in recent efforts to simulate such models and toward experimental demonstrations of quantum gravity effects. There are, therefore, both a computational and an experimental complexity inherent to this class of models. In this paper, we study this complexity under the lens of stabilizer entropy (SE). We calculate the SE of the gauge-invariant basis states and its average in the SU(2) gauge invariant subspace. We find that the states of definite volume are singled out by the (near) maximal SE and give precise bounds to the verification protocols for experimental demonstrations on available quantum computers.more » « less
-
Entanglement is the defining characteristic of quantum mechanics. Bipartite entanglement is characterized by the von Neumann entropy. Entanglement is not just described by a number, however; it is also characterized by its level of complexity. The complexity of entanglement is at the root of the onset of quantum chaos, universal distribution of entanglement spectrum statistics, hardness of a disentangling algorithm and of the quantum machine learning of an unknown random circuit, and universal temporal entanglement fluctuations. In this paper, we numerically show how a crossover from a simple pattern of entanglement to a universal, complex pattern can be driven by doping a random Clifford circuit with gates. This work shows that quantum complexity and complex entanglement stem from the conjunction of entanglement and non-stabilizer resources, also known as magic.more » « less
-
We advance the characterization of complexity in quantum many-body systems by examiningW -states embedded in a spin chain. Such states show an amount of non-stabilizerness or “magic”, measured as the Stabilizer Rényi Entropy, that grows logarithmically with the number of qubits/spins. We focus on systems whose Hamiltonian admits a classical point with extensive degeneracy. Near these points, a Clifford circuit can convert the ground state into aW -state, while in the rest of the phase to which the classical point belongs, it is dressed with local quantum correlations. Topological frustrated quantum spin-chains host phases with the desired phenomenology, and we show that their ground state’s Stabilizer Rényi Entropy is the sum of that of theW -states plus an extensive local contribution. Our work reveals thatW -states/frustrated ground states display a non-local degree of complexity that can be harvested as a quantum resource and has no counterpart in GHZ states/non-frustrated systems.more » « less
An official website of the United States government
